Quantcast
Channel: All Posts
Viewing all articles
Browse latest Browse all 2658

Tiny Giant: This Bitty Switch Aims To Supercharge 5G Mobile Networks

$
0
0
Menlo GRC MEMS 2015-114[2]

The flight attendants are about to shut the cabin doors when you realize you forgot to download that sci-fi blockbuster you were looking forward to watching during the flight. As they tell you to shut down your personal devices, you press the download button. Before they’ve arrived at your row to demand you shut it off, the entire high-definition movie has flooded into your phone and it’s already tucked away in your pocket.

After you land, you hire an autonomous taxi to take you home. Along the way, the vehicle slips through intersections without stoplights, a technology made obsolete when robotic systems started communicating with each other in real time to avoid collisions. Meanwhile, your smartphone alerts your smart home that you’re coming, engaging its high-efficiency battery banks to power your environmental, lighting and sound preferences.

This is, of course, the future. The key to making this scenario a reality isn’t about developing crazy new technologies — much of what we need already exists. It involves ultrafast telecommunications that can shuttle massive amounts of information between millions of wirelessly connected devices at the same time. It’s also about the ability to control power quickly, seamlessly and with extreme efficiency, as well as better battery management and machines made more intelligent by the liberal deployment of sensors that help them understand the world around them. And it turns out that the critical component to all of this could be something decidedly unsexy: a switch.

Menlo GRC MEMS 2015-102[2]

Menlo Micro is developing one of the most fundamental building blocks of electronic systems – the electronic switch. Menlo Micro’s Chris Giovanniello says that state of the art electromechanical relays can switch open or closed in 10-20 milliseconds. “Our technology is also an electromechanical relay that can switch open or closed in less than 5 microseconds. So that is more than 1000-times faster. This is due to the fact that we can make them so small.” Images credit: Menlo Micro

We are all familiar with switches. The best-known type of switch, when moved to the on position, completes a circuit between the power source and the bulb, allowing electrons to flow and the light to glow. This same current control — with varying levels of complexity — is used in every device that needs electricity, from computers and medical equipment to big industrial machines. It’s also critical to systems that transmit and receive radio frequencies such as cellphone networks. There, switches in transmitters and smartphones control the parts of the radio frequency spectrum used to communicate data between devices. The more bands and higher frequencies of the spectrum a device can quickly hop between, the more data it can transmit and receive.

For many of the new technologies that could shape our future world, switches need to drastically scale down in size, weight and cost. They also need to operate faster and more reliably over decades in adverse conditions. Amazingly, though, these electrical relays’ fundamental operation has remained relatively the same over the last 50 years.

But that’s about to change. A new company says it has brought these switches into the 21st century. Using advanced metallurgy and tricks learned from the semiconductor industry, California’s Menlo Micro has shrunk the traditional device down to the width of a human hair. The company is a spinoff of GE with significant investments from semiconductor maker Microsemi, Corning and Paladin Capital Group. It is commercializing 12 years of research inside GE Global Research, whose engineers were originally tasked with re-inventing the electromechanical switches used inside GE’s machines.

“This is a moment all technologists dream of, when you see years of hard work by a phenomenal cross-disciplinary team of scientists in the labs translate into a new business opportunity that also delivers game-changing technology,” said Menlo Micro co-founder and Chief Technology Officer Chris Keimel, who spent the last 12 years working as a scientist at GE Global Research.

Menlo GRC MEMS 2015-125[1]

“This digital micro switch will make a big impact on system design — it could lead to the development of dozens or hundreds of new products,” says Menlo Micro’s Giovanniello.

Chris Giovanniello, Menlo Micro’s senior vice president of product development and marketing and also a co-founder, says the company’s “digital micro switch” arose from needs in medical and industrial systems, where weight, space and performance are particularly important. “Others have tried to make a switch like ours before, but they couldn’t make them reliable enough, especially in extreme operating conditions,” Giovanniello says.

In addition to the weight and volume savings, the device also can switch current or radio frequency a thousand times faster than traditional components, and arrays of them can handle kilowatts of power at thousands of volts, a significant increase. At the heart of the improvement is a proprietary process that precisely lays the conductive metals of the switch onto a wafer. Hundreds of switches can be built onto a chip a fraction of the size of a dime, which could handle power switching for a big machine or a tiny light bulb.

The result is a device that will enable new applications in battery management, home automation, electric vehicles and the Internet of Things. It also could be the innovation that unlocks 5G mobile networks, where data transfer rates go from tens of megabits to hundreds of megabits or even gigabits per second. Menlo Micro says the switch is looking at a market opportunity of more than $5 billion.

“This digital micro switch will make a big impact on system design — it could lead to the development of dozens or hundreds of new products,” Giovanniello says. “This is the next wave of innovation.”


Viewing all articles
Browse latest Browse all 2658

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>